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Calculation of gas passage through a channel with parallel walls [i] is a problem of 
independent interest (in particular, with regard to describing turbulence [2]). Among the 
numerous, methods for solving such problems (see, e.g., [3]), none is universal. 

Of great practical interest is the calculation of gas discharge chambers, used in plasma 
chemistry and lasers. In that case it is necessary to study the gas dynamic equations in 
combination with equations describing oscillatory excitation of the gas molecules by the glow 
discharge. The well-known difficulties of constructing a simple and effective method for 
calculation of a gas flow with consideration of the boundary layer at high Reynolds number 
(~104-105 ) are complicated by specific problems related to oscillatory excitation. 

The development of a method for numerical solution of the gas discharge chamber problem 
with consideration of the boundary layer is the goal of the present study. 

Even under laminar boundary layer conditions, which occur most often at characteristic 
gas flow parameters in the gas discharge chamber (pressure ~i0 kPa, gas flow velocity ~i00 
m/sec, h % 5 cm, L ~ 50 cm), the incorrectness of the one-dimensional jet approximation is 
obvious. Oscillatory excitation of molecules by a glow discharge in the presence of boundary 
layers should lead to intense heating of the gas in those layers and significant inhomogeneity 
in the gasdynamic parameters. Other reasons necessitating treatment of the problem in the 
two-dimensional approximation are heat loss from the heated gas to the chamber wall and pos- 
sible heterogeneous relaxation (on construction details) of oscillatorily excited molecules. 

Significant'calculation difficulties arise because of the geometry of the gas discharge 
chamber (Fig. I): in practical chambers the number of "calibers" L/h~15 >> i. For numerical 
calculation of the boundary layer as parameter values characteristic of such chambers, the 
number of divisions required along the y-axis is Ny % 102 , while along the x-axis Nx~ 
103 , i.e., the number of points in the spatial grid may reach 9105 , which of itself makes 
a numerical solution of the problem by traditional methods problematic. Under conditions 
of intense inhomogeneity, one must use a nonuniform step size, which not all of the known 
methods permit [3]. 

In the present study we will develop a method for calculating gas discharge chamber 
characteristics based on the summary approximation method [4]. The solution of this problem 
is of practical interest for clarifying the effect of gas flow structure on pumping effi- 
ciency in long gas discharge chamber channels. The most widely used gas discharge chamber 
system is shown in Fig. i, where I is the forechamber, 2 is the actual gas discharge chamber 
with glow discharge, and 3 is the output chamber; the chamber walls serve simultaneously as 
electrodes (A, anode, C, cathode, while the arrow indicates the direction of gas flow). 

We consider a gas which is a mixture of anharmonic oscillators with inert atoms 
(for example, N2:He, CO:He, etc.) with CO 2 added to several percent (such mixtures are used 
in technological lasers). We now formulate our basic physical assumptions. Oscillatory 
excitation of molecules is produced by a glow discharge of specified power density jE = Wd(X, 
y) and an oscillatory efficiency qd; a fraction of the power i - ~d is expended in directly 
heating the gas. The heat from the heated gas arrives at the wall, the specific heat of 
which we is assume infinitely high 

The equations describing the steady-state boundary layer of the flow of viscous ther- 
mally conductive gas have the following form in Cartesian coordinates (P, P, T are the gas 
density, pressure, and temperature, V = {u, v, 0} is the velocity vector): 
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Fig. 1 

the continuity equation 

Ou/Ox + O~ay + uO In p/Ox + vO In p/Oy = O; (1)  

the projection of the law of conservation of momentum on the x-axis 

puOu/Ox + pvau/ay + dp/dx = a~oy + F~; (2 )  

the law of conservation of energy 

p%(uOr/ox + vat~@) - udp/dx = Q,; (3 )  

Qo = aq/@ + ~Ou/Oy + Qrel + (t - -  ~d) jE,  Qrel = P(EN - -  E ~ / T ~ t  (4) 
where the thermal source terms Qv denote, respectivley, heat liberation due to thermal conduc- 
tivity, internal friction, oscillatory energy relaxation, and direct heating of the gas by 
the discharge; 

= ~au/ay; (5) 
the dynamic viscosity coefficient 

the thermal flux 

t~ = t~o(ir /ro)~ ( 6 )  

q=xar/ay; ( 7 )  

X is the thermal conductivity coefficient (X = gCd/Pr) ; Pr is the Prandtl number; F x is the 
volume force. 

We now derive a consequence of system (i)-(3) convenient for the calculation pro- 
cedure. With consideration of elementary relationships for an ideal gas, it follows from Eq. 
(3) that -(uS in p/Sx + v8 in p/3y) = (~ - l)/7-Qv/p - u/7.d in p/dx. Combining this with 
Eq. (i), we obtain 

au/ax + av/ay = (y - t ) /~ .QJp  - u/yp.dp/dx. (8 )  

We then subtract Eq. (2) from Eq. (8) and divide the result by u: 

a(Wu)/ay = (1 - -  M D / o u ~ . d p / d z  + ff -- t)@.Qjpu - (aday + Fx)/OU 2, (9 )  
where the Math number 

M = d ~ .  (lO) 
An important relationship follows from Eq. (9): considering that 

lim (u /u)= lira (OUOy)/(Ou/Oy)= O, (II) 
y ~ o + o  Y~O+O 
y ~ h - - o  Y ~ h - - o  

we integrate Eq. (9) from 0 to h: 

whence 

h h 

0 = dp/dx ,! (1 - -  M ~ ) / 9 u  2 �9 dy - -  ~ [(a'vlOy)/pu 2 - -  (?  - -  l ) / y .  QJp~]  dy, 
o o 

h 

dp/dx = ,[ [(O~/aY)/P u2 - -  ( Y -  ] ) l?.Q,, /pu] dy ( t  - -  M~)/pu 2.dy. 
0 

For the specific (per unit mass of gas) oscillatory energy EN, we have 

puOEN/Ox + pvOEN/@ = aJv/@--9(EN--ENr ~ ~ Nv/E, 
where 

(12) 

(13) 

]~ = 9D*aEN/ay (l~) 
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as well as Eqs. 
chamber: 

is the diffusion flux of oscillatory energy; ENe is the equilibrium value of EN: 

EN e = XN BT~/(exp (T~/T) --  1); (15) 

T I = 3380 K is the energy of the first oscillatory level of the N 2 molecule; 

R=83,14/ .~ . iXi ; .  (16) 

~i is the molecular weight in atomic units; X i is the fraction of gas i in the mixture. 

Thus, for the numerical solution we will use Eqs. (2), (9), (13), and 

pUCdOT*/Ox + pedaT*/Oy : O(q+u~)/Oy + Q r e l - [ - ( t - - ~ d ) ] E + u F x ,  (17) 

T* : r -]- u2/2Cd, 
( 4 ) - ( 7 ) ,  (10) - (15)  and the  boundary c o n d i t i o n s  a t  the  inpu t  and wa l l s  of  the  

v(x, O) = v(x, h) = O, u(x, O) = u(x, h) = O, v(O, y) = O. 

Here u(0,  y) i s  a s p e c i f i e d  f u n c t i o n ;  T*(x, 0) = T*(x, h) = T~ i s  a s p e c i f i e d  q u a n t i t y ;  T*(0, 
y) = T~; p(0,  y) i s  the  p r e s s u r e  a t  t he  i npu t .  

We d e s c r i b e  t he  numer ica l  s o l u t i o n  a l g o r i t h m .  S p e c i f y i n g  u(x0,  y ) ,  p(x0,  y ) ,  T*(x0, 
y)  ( a t  the  chamber inpu t  x 0 = 0, T*(0, y) = T~), a) we d e f i n e  dp/dx f o r  a given x 0 from Eq. 
(12) ;  b) from Eq. (9) we f i n d  v(x 0, y) ( t he  t r a n s v e r s e  v e l o c i t y  component in t he  g iven sec-  
t i o n ;  we use Eq. ( l l )  f o r  the  boundary c o n d i t i o n s ) ;  c) knowing dp/dx and the  t r a n s v e r s e  ve lo -  
c i t y  p r o f i l e ,  we make a s t ep  in x(x § x,  + Ax): by s o l v i n g  system (2 ) ,  (13) ,  (17) wi th  c o r r e s -  
ponding boundary c o n d i t i o n s ,  we f i n d  T*(x 0 + Ax, y ) ,  EN(X 0 + Ax, y ) ,  and u(x 0 + Ax, y ) .  

The system (2 ) ,  (13) ,  (17) can be so lved  f o r  T e ,  E N, u by the  summary approximat ion  
method [4] ,  i . e . ,  we d i v i d e  the  system i n t o  a s e r i e s  of  s e q u e n t i a l l y  s o l v a b l e  sybsys tems ,  
namely (we omit boundary c o n d i t i o n s  everywhere) :  

I) dT*/dx ~ 0, dy/dx = v/u, du/dx = 0, dy/dx = v/u~ dEN/dx = 0, 

~ d x  = O/Ox + dy/dx. O/Oy; 

II) pu~OT*/Ox = O(q + u~)lOy, puOu/Ox = O~lOy, puOEn/OX = OJD/Oy , 

q = ~OT/Oy; 

III) OT*/Ox = O, CdOT/Ox + uOu/Ox = O, puOu/Ox + dp/dx = 0, uOu/Ox + 

+ t/p.dp/dx = 0, puOEN/Ox = 0; 

IV) pucdOT*/Ox = Q r e l +  (1 - ~ d ) j E ,  puOu/Ox = O~ puOEN/Ox = 

= --p(En -- E ~ ) I T  N + ~djE. 

Having de te rmined  u,  E N, T*(x 0 + hx, y) and us ing  s t eps  ga,#b~, t h e  va lues  of  v,  dp /dx(x  0 + 
hx, y ) ,  we t ake  t he  next  s t ep  in x, e t c .  The d i v i s i o n  a long the  y - a x i s  i s  uni form and com- 
p r i s e s  Ny = h / b y  = 50-100 i n t e r v a l s .  The s tep  in  x i s  chosen from the  c o n d i t i o n  of  s t a b i l i t y  
of  the  numer ica l  i n t e g r a t i o n  of  subproblem I - IV;  t he  number of  such nonuniform d i v i s i o n s  
a long the  x - a x i s  N x ~ 1 0 3 .  The obvious advan t age  of  the  proposed method i s  t he  p o s s i b i l i t y  
of  c a l c u l a t i n g  gas d i s c h a r g e  chamber c h a r a c t e r i s t i c s  over an a r b i t r a r y  l e n g t h ,  more p r e c i s e l y ,  
one such t h a t  L/h  >> 1. 

The numerical solution of the system of equations was verified by calculating gas flow 
rate at the input, in various cross sections, and at the chamber output, together with the 
energy balance. Although the calculation does not employ difference analogs of the conserva- 
tion laws, the mass and energy balances agree with a completely satisfactory accuracy ~ 3%. 

Another test procedure is to calculate the steadyistate distribution of gasdynamic para- 
meters in the chamber in the absence of a glow discharge. For an arbitrary velocity profile 
at the gas discharge chamber input, u(0, y), as L § = the calculation yields a u(L, y) at the 
output which approaches a Poiseuilie flow. 

At first glance, the use of the laminar boundary layer approximation may raise doubts, 
since under conditions typical of high-flow lasers, Re % i0 S or more. However careful study 
of the question reveals that for the gas flow parameters studied, Re < Recr, and there is no 
reason to doubt the validity of the approximation used. 
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Fig. 4 

As an example, we consider calculation of a gas discharge chamber with characteris- 
tic parameters: L/h = 25, specific gas flow rate 2 g/(cm2"sec), symmetrical longitudinal 

h 

v e l o c i t y  p r o f i l e  a t  t h e  i n p u t  ( F i g .  2 ) ,  and mean v e l o c i t y  u = ~ u(0,  y ) d y =  100 m / s e c .  We s p e c -  
0 

i f y  t h e  volume power o f  t h e  glow d i s c h a r g e  homogeneous  o v e r  t h e  gas  d i s c h a r g e  chamber  s p a c e  
( w i t h  t h e  e x c e p t i o n  o f  t h e  n e a r - e l e c t r o d e  r e g i o n s ) ,  jE  = 3-10 ~ W/m 3, d i s c h a r g e  e f f i c i e n c y  
qd = 0 .95  [ 5 ] .  For  a m i x t u r e  C 0 2 : N 2 : ~ e = 2 : 4 9 : 4 9  we t a k e  r e l a x a t i o n  c o n s t a n t s  such  t h a t  
(pxN2._N2) -1 = 10 -3 ( P a - s e c )  - 1 ,  (pxN2_He) - l  = 5 . 1 - 1 0  ,2 ( P a . s e c )  -1 a t  300 K~ 

F i g u r e  2 shows t h e  l o n g i t u d i n a l  component  o f  gas  f l o w  v e l o c i t y  u ( x ,  y)  in  v a r i o u s  s e c -  
t i o n s  o f  t h e  gas  d i s c h a r g e  chamber ,  w i t h  v e l o c i t y  v a l u e s  on t h e  chamber  a x i s  o f  symmetry  
noted. It is evident that the velocity profile smooths toward the output, while the size of 
the boundary layer increases. With motion toward the gas discharge chamber output, the gas 
heats up and the pressure increases. The calculations also consider the presence of near- 
electrode regions in the discharge, jE is specified in anarrow region near the electrodes 
in accordance with known values of the anode and cathode potential drop, while the discharge 
efficiency at the cathode qdIc = 0. Also considered was the dependence of XN on @ = TN/T, 
the ratio of the oscillatory to the translational temperature, where when some threshold 
value @cr i s reached, XN falls by two or more orders of magnitude [5]. Relaxation of oscil- 
latorily excited molecules on the gas discharge chamber walls is considered by the condition 
at the wall 

y=h y=h 

w i t h  e x c i t e d  m o l e c u l e s  r e a c h i n g  t h e  w a l l  by d i f f u s i o n  and r e l a x i n g  w i t h  an accommodat ion  
coefficient E v [6] (it was assumed that ~v = I). 

Because of the lower flow velocity at the walls, the gas there remains in the chamber 
longer and is "pumped" more intensely (Fig. 3, which shows the distribution of oscillatory 
energy density EN(X , y) over the gas discharge chamber, gives E N values on the chamber axis 
of symmetry). Figure 4 shows the temperature distribution T(x, y) over the gas discharge 
chamber, with temperature values on the axis noted. It is evident that the gas is heated 
more in the boundary layer as a result of relaxation. In the direct vicinity of the wall, 
the gas is colder due to heat loss to the wall. Despite the high discharge efficiency which 
was specified (qd = 0.95), when the boundary layer is considered, the fraction of oscillatory 
energy is quite low, comprising ~0.6 in the total chamber energy balance. 

Within the framework of the system of equations used herein, an analogous study could be 
performed for the presence of turbulence, it being sufficient to add turbulent transport co- 
efficients to the equations where required. 
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GENERALIZED RELAXATION EQUATIONS FOR VIBRATIONAL AND ROTATIONAL 

MOLECULAR KINETICS IN GAS FLOWS 

G. I. Sukhinin UDC 533.011.8 

A system of kinetic equations for the distribution functions of gas particles over quan- 
tum states (over vibrational and rotational molecular levels) is usually used to describe 
nonequilibrium relaxation processes in molecular gases [i]. Here we consider impurity relax- 
ation of a molecular gas in a monatomic gas flow, when molecular collisions can be neglected 
and the distributions of gasdynamic parameters are known. 

The kinetic equations are in this case 

dN~ 
=ng x (K~jN~ -- K~iNO~ (1) dt J 

where N i is the population of the i-th molecular quantum level with energy Ei, satisfying 

the normalization condition ~ Ni-~ i ; Kij(T) are rate constants of molecular transi- 
i 

tions from state j into state i during collisions with atoms of the gas flow, having tempera- 
ture T and density ng and satisfying the detailed balance rule'KijN 3 = KijN'{; N~ are molecular equil- 
ibrium Boltzman distributions over quantum states, N* = giexp(--EikT)/S; gi is the statistical 
weight of the state; and S is the partition function for the system of levels under consider- 

ation, S = "~g~exp(--Ei/kT). 
i 

For known dependences of Kij on quantum numbers and temperature, as well as for known 
distributions of the gasdynamic parameters of the monatomic gas, Eqs. (i) can be solved numer- 
ically. However, the numerical solutions of the kinetic equations are not always convenient, 
as a large amount of calculations is required, particularly if it is necessary to take into 
account the large number of quantum levels. 

Besides,'the shape of the constants Kid(T) is usually unknown, and the absence of reli- 
able constants leads to the necessity of usxng semiempirical dependences with adjustable 
parameters in solving the kinetic equations, selected by comparison with experiment. This 
also increases the bulk of calculations, and the problem of choosing an adequate set of rate 
constants, describing experimental data, remains nonsimple. The matter is that rate con- 
stants with different dependences on quantum numbers and temperature can lead to nearly equal 
distributions in the populations of molecular quantum levels. 

Here we propose to represent the populations N i in the form of an expansion in ortho- 
gonal functions. As a result, the system of kinetic equations (i) transforms to an equivalent 

-I system of moment equations, characterized by some set of time relaxations ~km' which in some 
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